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A Gibbs-like approach for simultaneous multi-scale correlation functions in
random, time-dependent, multiplicative processes for the turbulent energy
cascade is investigated. We study the optimal log-normal Gibbs-like distribution
able to describe the subtle effects induced by non-trivial time dependency on
both single-scale (structure functions) and multi-scale correlation functions. We
provide analytical expression for the general multi-scale correlation functions in
terms of the two-point correlations between multipliers and we show that the
log-normal distribution is already accurate enough to reproduce quantitatively
many of the observed behavior. The main result is that non-trivial time effects
renormalize the Gibbs-like effective potential necessary to describe single-time
statistics. We also present a generalization of this approach to more general,
non log-normal, potentials. In the latter case one obtains a formal expansion of
both structure functions and multi-scale correlations in terms of cumulants of
all orders.
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1. INTRODUCTION

Small scales, three-dimensional, turbulent fluctuations are sustained by the
energy cascade mechanism: energy is injected at large scales, L0, and dis-
sipated at small scales, g. The statistical properties of the energy transfer
throughout the range of scales going from L0 to g (inertial range) are



thought to possess highly non-trivial features, mainly, but not only, sum-
marized by the presence of anomalous scaling, i.e., pth order velocity
structure functions, Sp(r)=O(v(r) − v(0))pP have a power law scaling with
anomalous exponents, Sp(r) ’ (r/L0)z(p). The existence of a net, direct,
energy flux in the inertial range is a clear indication of the out-of-equilib-
rium nature of turbulent flows. The exact symmetry of the inertial
Navier–Stokes terms with respect to direct or inverse energy transfer is
explicitly broken by the existence of an energy source at large scales and an
energy sink at small scales. The energy cascade process has been often, and
fruitfully, described in terms of a multi-step fragmentation process describ-
ing the tendencies of inertial range eddies to break in smaller and smaller
eddies, following the celebrated Richardson scenario. (1) The spatio-tem-
poral complexity of the fragmentation process has been successfully
described by ref. 5 using the multifractal language, which have proved able
to reproduce qualitatively and quantitatively single-scale, multi-scale and
multi-time multi-scale velocity correlation functions. (3–6)

By using the multifractal language one can assume that the velocity
difference on scale r2 is linked to the velocity difference at scale r1 \ r2 by
the equation

dv(r2)=M(r2, r1) dv(r1), (1)

where M(r2, r1) is a suitable random variable. Moreover, one often limits
the complexity by assuming almost uncorrelated multipliers:

M(r1, r3)=M(r1, r2) M(r2, r3)

for any choices of r1 < r2 < r3 in the inertial range. The above assumptions
lead to the concept of random multiplicative process as a possible way to
characterize the turbulent, multifractal, velocity field. In ref. 2 a Gibbs
measure for the random multiplicative process has been introduced in
order to compute, self consistently, the anomalous scaling exponents for a
class of Shell models. Recently, the idea discussed in ref. 2 have been
further developed in ref. 7 by studying some new proposals on how to use a
Gibbs-like approach to describe energy fluctuations in the inertial range.
According to the Kolmogorov hypothesis of local interactions in Fourier
space, one expects short range correlations between multipliers, while
velocity fields may still show long-range correlations. On one hand, the
simplest phenomenological multifractal description able to capture the
correct anomalous scaling for single-scale structure functions is based on
the assumption of a complete uncorrelated multiplicative process. (8) On the
other hand, the assumption of completely independence between mul-
tipliers is untenable because in disagreement with some theoretical and
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experimental results. In this paper, we try to perform a step toward a more
realistic description of turbulent energy cascade by studying also determi-
nistic and stochastic processes with correlation between multipliers. Corre-
lations are introduced by a non-trivial time evolution of multipliers in a self-
consistent way, i.e., by imposing that time and spatial fluctuations are
linked as dictated by the non-linear terms of the Navier–Stokes equations.
The main goal is to obtain the optimal effective Gibbs potential able to
describe the simultaneous fluctuations of the velocity field at all scales.

We study the problem in both deterministic models of turbulent
energy cascade (Shell Models) (9, 10) and in stochastic, time-dependent, mul-
tiplicative processes. Let us recall that shell models are the simplest deter-
ministic models whit anomalous multi-time and multi-scale velocity corre-
lation functions. Moreover, shell models possess the special feature to have
no sweeping terms, i.e., also temporal properties of the energy cascade can
be tested.

The paper is organized as follows. First we briefly recall the main fea-
tures of Shell models and we define the set of observable we want to
describe within the Gibbs approach. Then, we discuss the simplest, log-
normal, approximation for the Gibbs-potential. Log-normal potential
enjoys the properties to be ‘‘exactly solvable,’’ any structure functions and
multi-scale correlation function possess an explicit expression in terms of
the two-point spin-spin correlation function (see below). We present some
evidences that already the simple log-normal approximation is able to
capture many of the observed behaviors for both stochastic process and
shell models. Further, we discuss how to generalize the approach to a more
general, i.e., non log-normal, potential, and finally, we conclude with
comments on possible future works.

2. THE GIBBS ENSEMBLE

Shell models describe the energy turbulent transfer on a set of scales
(shells) in the Fourier space, kn=k0ln, where k0 is the smallest wavenum-
ber and l is the inter-shell ratio, usually set to 2. Velocity shell variables,
un(t) are complex numbers representing velocity fluctuations, drn

v, over a
scale rn=k−1

n , with n=0,..., N. Among all possible shell models a very
popular one is the Sabra model (11) an improved version of the GOY
model. (9) The model is:

(d/dt+nk2
n) un=ikn(un+2ug

n+1+bun+1ug
n − 1 − cun − 1un − 2)+fn (2)

where n is the kinematical viscosity, b, c are free parameters fixed by
requiring that energy and helicity are inviscid invariants of the models and

Gibbs-Like Measure for Single-Time, Multi-Scale Energy Transfer 139



fn is the external forcing with supports only on large scales (small shell
indexes). The existence of only local interactions between shells allows to
have highly non-trivial time properties, i.e., the model is a reliable approx-
imation of velocity evolution in a quasi-Lagrangian reference frame. The
model is known to possess realistic multi-time and multi-scale correlation
functions, including anomalous inertial range scaling and dissipative
anomaly, for a review see refs. 5, 8, and 10. Typical observable checking
single-scale Probability Density Functions (PDF) are given by structure
functions:

Sp(kn)=O|un |pP. (3)

On the other hand, multi-scale single-time observable which will play a
relevant role in the following are the two-scale correlation function:

Fp, q(kn, kn+m)=O|un |p |un+m |qP. (4)

Usually, multifractal phenomenology is based on uncorrelated multipliers,
M(kn, kn+m), connecting the two shell velocity at scales kn, kn+m as
un+m=M(kn, kn+m) un. This simple scenario leads naturally to pure, ano-
malous, power law scaling for the structure functions (3),

Sp(kn) ’ k−z(p)
n

and to pure fusion-rules predictions for the two scales correlation: (4–6)

Fp, q(kn, kn+m) 3 (kn+m/kn)−z(q) k−z(p+q)
n . (5)

The numerical integration of shell model equations (2) shows that the
behavior of the multi-scale correlation function, Fp, q(kn, kn+m), predicted
by (5) is true only asymptotically for very large scale separation kn+m/
kn Q ., while important deviations are detected for scale separation,
kn+m/kn ’ O(1). The origin of such deviation can easily be understood if
one looks at the typical temporal evolution of the energy contents at dif-
ferent scale. In shell models, energy is transferred down-scale by a burst-
like activity, strong coherent energy bumps travel from large-scales to small-
scales. Each scale has its typical, fluctuating, eddy-turn-over time,
yn ’ 1/(unkn). Energy is transferred from scale kn to scale kN in a typical
time yn, N=yn − yN (with N > n). The non-instantaneous, intermittent,
propagation of energy from shell to shell is dynamically realized by
non-trivial fluctuations of shell model phase variables, fn of (2)—where
un=|un | exp ifn.

140 Benzi et al.



The time-delay in the information propagation has important feed-
back also on single time observable as structure functions and multi-scale
correlation functions (see below). This is the physical reason why the
understanding of single time statistics calls for the understanding also of
multi-time statistics. The scope of this article is to investigate to which
extent one may try to build up an effective Gibbs-like description capable
to incorporate the effects of non-trivial time fluctuations on single-time
statistics. In the following we restrict ourself to discuss the probability dis-
tribution function of shell amplitude, |un |. In ref. 7, following the original
proposal made in ref. 2, a Gibbs hypothesis has been developed for
the simultaneous probability distribution function of the un set of shell
variable:

P(u1, u2,..., uN) 3 e−F(u1, u2,..., uN) (6)

where for sufficiently high Reynolds numbers we will suppose the potential,
F, to become translational invariant in the shell index (independent on the
UV and IR boundary condition). As previously said, we also make,
following, (2, 3) the further assumption that the potential depends only on
ratios between shell variables, i.e., it is an homogeneous function of zero
degree. The physical rationale for this assumption stem from the original
Kolmogorov remark that energy-cascade is maintained by a local transfer
in Fourier space. Introducing the spin variables, sj=log2(|uj − 1|

|uj| ) we may
rewrite the Gibbs-hypothesis for the shell amplitudes as:

F(|u1 |, |u2 |,..., |uN |)=f(s1, s2,..., sN).

Let us remark that the Gibbs-potential has nothing to do with the ‘‘equili-
brium’’ distribution obtained by the equipartition of the inviscid invariants
even in the limit of n Q 0. In ref. 7 a very detailed numerical and theoretical
analysis on the consequences of such a description has been made, giving
strong evidences that the formalism is consistent with the statistical prop-
erties of the model. Here, we want to push further this hypothesis by
explicitly looking at the possible Gibbs-potential able to reproduce quanti-
tatively and qualitatively the measured structure functions (3) and multi-
scale correlation functions (4). A pure uncorrelated multiplicative process
on the shell amplitude is described in the Gibbs formalism by a simply
infinite temperature Gibbs potential with no interaction between spins:

f(s1, s2,..., sN)= C
N

j=1
V(sj). (7)
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Indeed, it is simple to show that in this case we have for the structure
functions the exact anomalous scaling:

Sp(kn)=O|un |pP 3 F D
j

dsj exp 3 −1 C
N

j=1
V(sj)+p log(2) C

n

j=1
sj
24 3 k−z(p)

n

with z(p)=−log2O2−psP, where with O ·P we mean the average with respect
to the Gibbs measure < dsj exp{ − f(s1, s2,..., sN)}. Similarly, for the
multi-scale correlation function we have:

Fp, q(kn, kn+m)=O|un |p |un+m |qP=O2−(p+q) ;n
j=1 sj − q ;n+m

j=n+1 sjP , (8)

which correspond to the fusion-rule prediction (5) for all scale separation.
On the other hand, as previously said, the pure uncorrelated hypo-

thesis cannot be correct because it does not predict the observed behavior
of multi-scale separations for small scale separation, kn/kn+m ’ O(1).
Indeed, two-scales correlation as (4) tends to the fusion-rule prediction (5)
only asymptotically—see for example Fig. 2. Thus, it seems necessary to
add to the uncorrelated potential (7) some spin-interaction. The simplest
analytical way to do it is to stay within all possible interaction in a Gaus-
sian field, i.e., to consider a ‘‘correlated’’ log-normal distribution for the
shell variables. As we shall see in the last section, this assumption is not
restrictive, most of the qualitative and quantitative results here presented
can be extended to more complex probability distribution.

A log-normal uncorrelated process is described by the Gibbs potential:
f(s1, s2,..., sN)=;N

j=1
(sj − h0)2

(2c2)
where the only two free parameters are the

log-mean h0 and the log-variance c2. Correlations among multipliers can be
introduced by writing the Gibbs potential as:

f(s1, s2,..., sN)=1
2 C

j, i
sjAjisi − h0/c2 C

j
sj (9)

where now the matrix of interaction is given by Aji=dji/c2 − Jji. Clearly,
by taking Jji depending only on the separation between shell indexes, j − i,
we may describe the most general translational invariant, log-normal, two-
body potential. Translational invariance in the spins variable is the
counterpart of scaling invariance for the velocity variables.

As previously said, in shell models one cannot simply disentangle the
amplitude fluctuations, |un |, from the phase fluctuations, fn, in other words
one cannot expect to reproduce quantitatively the multi-scale fluctuations
without a further explicit introduction, in the Gibbs formalism, also of
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phase-variables. In order to make the discussion simpler, we will test
quantitatively the Gibbs-formalism on a stochastic, time-dependent, mul-
tiplicative signal involving only amplitude fluctuations, meant to mimic the
amplitude evolution of shell models dynamics. We will go back to com-
parison with the outcomes of the original deterministic dynamics (2) only
to show the ability of the Gibbs formalism to catch the main qualitative
behaviors.

The stochastic, time-dependent, multiplicative process is built as
follows (see also ref. 12).

We introduce N i.i.d. random variables, Wj=M(kj+1, kj), one for
each shell, describing the uncorrelated instantaneous multipliers connecting
amplitudes of shell variables between shells n and n+1, i.e., |un+1 |=Wn |un |.
The probability of W coincides with the log-normal uncorrelated Gibbs-
potential: P(Wn) 3 exp{ − (sn − h0)2

2c2 }. To generate the time dynamics we
proceed as follows. We extract Wn with probability P(Wn) and keep it con-
stant for a time interval [t, t+yn], with yn=1/(|un | kn) being the local
instantaneous eddy-turn-over time, Thus, for each scale kn, we introduce a
time dependent random process Wn(t) which is piece-wise constant for a
random time intervals [t (k)

n , t (k)
n +yn], if t (k)

n is the time of the kth jump at
scale n. The corresponding velocity field at scale n, in the time interval
t (k)

n < t < t (k)
n +yn, is given by the simple multiplicative rule:

|un(t)|=Wn(t) |un − 1(t (k)
n )|. (10)

What is important to notice is that at each jumping time, t (1)
n , t (2)

n ,..., t (k)
n ,...,

for any scale, n, only the local velocity field is updated, i.e., information
across different scales propagates with a finite speed. It is easy to realize
that the propagation speed is proportional to the characteristic speed of the
energy cascade in turbulent flows, i.e., a fluctuations in the multiplier at
scale kn takes a time T ’ yn − ym to propagate down to scale km. In this way
we reproduce the phenomenology of the non-linear evolution of the shell
model dynamics: d/dt un 3 knu2

n, which is itself meant to mimic the non-
linear evolution of a Navier–Stokes field in quasi-Lagrangian reference
frame. This is the simplest stochastic evolution with non-trivial spatial and
temporal fluctuations in qualitative agreement with the shell models phe-
nomenology. (12) In the following, whenever we refer to the time evolu-
tion of the stochastic process at scale kn we use the notation u (s)

n (t) to
distinguish it from the time evolution of the deterministic shell-model
velocity, un(t). The link between spatial fluctuation and temporal fluctuations,
yn=1/(knun), has important feedback even on the single time structure
functions, Sp(kn), and single time multi-scale correlation functions,
Fp, q(kn, kn+m). In Fig. 1 we plot the scaling exponents of the structure
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Fig. 1. Comparison between the scaling exponents, z(p), calculated on the simple multipli-
cative process without time dependencies, (×) and with fluctuating time, (+). Notice the
renormalization observed in the values of the exponents once fluctuating eddy-turn-over times
are switched on.

functions measured on the stochastic field, S (s)
p (kn)=O|u (s)

n |pP with and
without fluctuating eddy-turn-over time. As one can see there is an important
‘‘renormalization’’ effect when eddy-turn-over times fluctuate. The scaling
exponents move from the simple uncorrelated value when the time dynam-
ics is trivial to a renormalized value when local multipliers are updated with
stochastic times. This renormalization effect can be understood in terms of
the correlation between the fluctuating eddy-turn-over times and the mul-
tipliers. (12) This is the first evidence of a relevant effect on the energy
cascade introduced by the time dynamics even on single-time observable. In
Fig. 2 we also compare the behavior of a single time multi-scale correlation
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Fig. 2. Normalized multi-scale correlation function C (m)
2, 2 =

Oup
n uq

n+mPOuq
nP

Ouq
n+mPOup+q

n P
with n=12 as a func-

tion of the scale separation m, for shell model (+) and stochastic multiplicative signal
with time dependencies (×). The straight line of value 1, corresponds to the trivial case of
a multiplicative uncorrelated process without any time-dependency.
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Fig. 3. Two point normalized connected correlation function among multipliers, spins,
OsisjPc/OsisiPc with i=8 at changing the scale separation j=i − 8,..., i+8 calculated on
the shell model (×) and on the time-dependent stochastic signal (+). Both i and j are in the
inertial range for the shell model simulation.

function, F2, 2(kn, kn+m), measured on the stochastic process with and
without time dependency and in the original shell model (2). It is important
to notice that both shell model and the stochastic, time-dependent, process
show the same similar slow approach to the asymptotic plateau for the
normalized multi-scale correlation function. The above result suggests that
the departure measured for small scale separation from the asymptotic
fusion-rule prediction (5) is mainly due to non-trivial correlation between
multipliers introduced by the time-dynamics. (5)

In Fig. 3 we show the spin-spin correlation, i.e., the correlation among
multipliers, for both the time dependent random multiplicative process and
the equivalent quantities in the shell model. It is rather clear that time
dynamics introduces a correlation among multipliers in a non trivial way.
Moreover, it is important to remark that the spin-spin correlation is quali-
tative similar for both the time dependent random multiplicative process
and the shell model. In particular let us remark that the near neighborhood
correlation is negative in both cases.

3. SOME RIGOROUS RESULTS

In both shell models and the stochastic process all single time correla-
tion functions are determined by the whole spatio-temporal dynamics. We
want now investigate the possibility to reproduce the effects of the non-
trivial time properties of the energy cascade on the single-time statistics.
We try to do it by an effective, time independent, Gibbs potential. Therefore,
the Gibbs-potential must be seen as a renormalized set of time-independent
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interaction describing the whole set of possible multi-scale single-time
correlation functions.

In order to keep our discussion as simple as possible we confine here
to investigate log-normal distributions. In the next section, we generalize
our results for any probability distribution of random multipliers. As dis-
cussed in Section 2, we define the random multipliers as the ratio between
stochastic fields at neighboring scales: u (s)

i /u(s)
i − 1=Wi=2−si. It follows that

the joint probability distribution for a given set of spins/multipliers {si} is
given by:

P[si] 3 exp 3h0/c2 C
N

i=1
si − 1

2 C
i, j

Ai, jsisj
4 , (11)

where Ai, j is the spin-spin interaction. We introduce the shorthand notation
sF to denote the N-component vector formed by all spins sF=(s1, s2,..., sN)
and Â to denote the interaction matrix. Then, we may rewrite the partition
function Z(hF0):

Z(hF0)=F dsF exp { − 1
2 sFÂsF+hF0 · sF} ’ exp

1
2 (hF0Â − 1hF0) (12)

where the vector hF0 is made of constant entries for all scales: hF0 —

h0/c2(1, 1, 1, 1,...). Having restricted ourselves to the most general Gaus-
sian distribution it is not surprising that one can work out an explicit
formula for the most general multi-scale correlation functions in terms of
the two-point connected correlation function, OsisjPc=OsisjP−OsiPOsjP,
only. In the appendix we present the long straightforward calculation
leading to the final expression:

C (m)
p, q=

Oup
n uq

n+mPOuq
nP

Ouq
n+mPOup+q

n P
=eT

m
p, q (13)

with

Tm
p, q=(log 2)2 pq 1 C

n

i=1
Osisn+1Pc+Osisn+2Pc+ · · · +Osisn+mPc

2 . (14)

The above formula has a particularly appealing interpretation: deviations
of the multi-scale correlation functions from its ‘‘multiplicative uncorre-
lated’’ fusion-rules prediction (5) is governed by the short range correlation
between multipliers. Indeed, in the RHS of (14) the main contribution is
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carried by the first connected correlation function, Osnsn+1Pc, while all the
other terms becomes less and less important because they connect spins at
larger and larger distances. It turns out that spins are anti-correlated at
short distances (see Fig. 3). This is the reason why all normalized multi-
scale correlation functions (13) converge to a plateau smaller than unity,
i.e., C (m)

p, q < 1. Moreover, in this log-normal approximation, the coefficients
C (m)

p, q are symmetrical in p, q something which may be exploited in order to
reduce the number of degrees of freedom in closures. (13)

3.1. Numerical Tests

Let us now try to check numerically whether the log-normal approx-
imation is in good agreement with the numerics observed in the stochastic
signal, u (s)

n (t). As already remarked, the most general log-normal distribu-
tion is completely fixed once one defines the Aij coupling matrix and the
magnetic field h0 defining the ‘‘bare’’ probability distribution function of
multipliers, h0=−Olog2 WP. Moreover, the coupling matrix is in one-to-
one correspondence with the connected two-spins correlation functions:

A−1
ij =OsisjPc. (15)

We have therefore taken as our best guess for the coupling potential the
expression for Jij obtained from (15) by using the measured two-point cor-
relations OsisjPc in the stochastic evolutions—a plot of OsisjPc is shown in
Fig. 3. Then, from this numerical input we can check whether the quanti-
ties analytically computable from (11) are in agreement with those
measured on the stochastic signal. In Fig. 4 we compare the two multi-scale
correlation functions calculated either numerically or from the (11) expres-
sion. As on can see the agreement is qualitative and quantitatively very
satisfactory. The above results tell us that the most general log-normal dis-
tribution, chosen to exactly reproduce the measured two-point correlation
function, OsisjPc is also able to reproduce in a quantitative way the multi-
scale correlation function with high accuracy, i.e., the log-normal approx-
imation with the potential given in Fig. 3 is a very close approximation of
the ‘‘effective’’ single-time probability distribution of the complete time-
dependent stochastic process. Also scaling exponents measured on the cor-
related log-normal potential are in good agreement with those measured
numerically on the time-dependent stochastic process (with deviations of
order 5% on the 10th order exponent). Furthermore, in the next section,
we will show that the log-normal result can be seen as the first term in
a systematic expansion in cumulants of the most general probability
distributions.
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Fig. 4. Comparison between two-scale normalized correlation functions, calculated from the
log-normal Gibbs formalism and on the stochastic time-dependent multiplicative process. Top
curves: C (m)

22 from the Gibbs formalism, (+), and for the stochastic process, (×). Bottom
curves: C (m)

24 for the Gibbs formalism, (squares), and for the stochastic process ( ×+).

4. A GENERALIZATION TO NON-GAUSSIAN DISTRIBUTIONS

We want here to present a simple argument showing that the expres-
sion (14) obtained within the log-normal approximation can always be seen
as the first term of a formal cumulant expansion for the most general
potential.

Let us consider the generic interacting potential F(s1,..., sN) among
the N spins. Where we now may include also three-body and multi-body
interactions in F and/or the spins variable can take values also on a
discrete set (Ising-like systems). If we go back to the observable we want to
control in our multiplicative process, we realize that one may write both
structure functions and multi-scale correlation functions as suitable parti-
tion function calculated with suitable external magnetic field:

Oup
nP 3 C

{si}
exp{sF · HF p

n − F(s1,..., sN)}=Z(HF p
n ) (16)

and

Oup
n uq

n+mP 3 C
{si}

exp{sF · HF p, q
n, n+m − F(s1,..., sN)}=Z(HF p, q

n, n+m) (17)

where HF p
n and HF p, q

n, n+m are site-dependent magnetic fields which are expli-
citly defined by the expressions (26) and (28) in Appendix A—see Appendix A
also for a detailed derivation of (16) and (17). Notice that in the generic
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potential F we already include any possible linear coupling with an homo-
geneous magnetic field. Exploiting the expansion in cumulants of a generic
partition functions one easily obtain the formal expression for the structure
function and the two-scale correlation function, respectively:

logOup
nP 3 C

k

1
k!

C
i1, i2,..., ik

Osi1 si2 · · ·sikPc Hp
n(i1) Hp

n(i2) · · ·Hp
n(ik); (18)

logOup
nuq

n+mP 3 C
k

1
k!

C
i1, i2,..., ik

Osi1 si2 · · ·sikPc Hp, q
n, n+m(i1) Hp, q

n, n+m(i2) · · ·Hp, q
n, n+m(ik),

(19)

where all connected correlation functions, Osi1
si2

· · · sin
Pc are calculated at

zero external magnetic fields, HF=0. It is easy now to realize that the
general expression for, C (m)

p, q , i.e., the deviation from the pure fusion-rules
prediction for two-scale correlation function can be expressed as a power
series of suitable combination of external magnetic fields:

log(C(m)
p, q)=C

k

1
k!

C
i1, i2,..., ik

Osi1
si2

· sik
Pc Mp, q

i1, i2,..., ik
(20)

with

Mp, q
i1, i2,..., ik

= D
j=i1,..., ik

(Hp, q
n, n+m(j)+Hq

n(j) − Hq
n+m(j) − Hp+q

n (j)). (21)

Obviously, for a given order, k, the different indexes i1,..., ik must take
values between 1 and n+m; indeed, it is sufficient that only one among
i1,..., ik does not fall between n and n+m to have that the external magne-
tic fields Hp

n , Hq
n, Hq

n+m, Hp, q
n, n+m vanish and therefore Mp, q

i1,..., ik
=0.

Expression (20) tell us that the previous log-normal result (14) can be
seen as the first contribution, k=2, in the above expansion, contribution
for k=1 being identically zero. It is easy to realize that if the potential is
exactly log-normal, only contribution form the k=2 term appears, while in
the most general case one need to control also three-point correlations,
OsssPc and multi-point correlations.

In Appendix B we develop explicitly the expression of (20) for any
order k and also the similar interesting expansion obtainable for single
scale structure functions (18). It is important to remark, that from the
latter one also obtain a formal expansion of z(p) exponents in power of p:

z(p)= C
j > 0

cj p j (22)
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where the set of cj are connected to the choice of the interacting potential, F.
In the case of a log-normal potential we nay write the explicit expression of
scaling exponents in the limit of small enough scales, i.e., for n large
enough:

z(p)=p
1
n

C
n

i=1
OsiPc −

p2 log(2)
2n

C
n

i=1
(Os1siPc+Os2siPc · · ·OsnsiPc). (23)

The above expression tells us that the renormalization of exponents due to
the appearance of correlation among multipliers is linked to the magnetic
susceptibility, i.e., to the integral of the connected two-point correlation for
all scale separations. Obviously, in the simple case of pure uncorrelated log-
normal process with OsisjPc=di, j · c2 and OsiPc=h0, one finds the well
known result:

z(p)=ph0 − 1
2 p2c2 log(2). (24)

5. CONCLUSIONS

A Gibbs-like approach for single time multi-scale correlation functions
in a class of random multiplicative process with non-trivial time depen-
dencies has been investigated. We have shown that there exists an optimal
log-normal Gibbs-like measure able to reproduce with high accuracy the
effects induced by the temporal dynamics on the single-time correlation
functions. We have explicitly calculated the expression of the most general
two-scale correlation functions Oup

n uq
n+mP in the log-normal approximation.

We have also shown that the log-normal result can be seen as the first
order of a formal cumulant expansion obtained for a completely general
potential of interactions between spins (multipliers). Within this formalism,
also scaling exponents, z(p) have a simple power-law expansion in terms of
the order of the moment, p. The first two terms in this expansion coincides
with the usual quadratic log-normal expression.

Qualitatively, we expect that very similar results can be obtained in
order to describe the multipliers statistics of more realistic models as the
case of shell models. The qualitative similar behavior shown in Figs. 2 and 3
indeed is a good evidence that the stochastic process here studied mimics
quite well the shell model dynamics. The presence of non-trivial phase-
phase correlations and phase-amplitude correlations in shell models is the
major difficulties to overcome if one wants to apply in a quantitative way
the Gibbs approach in this case. To proceed on this route one needs to
introduce some spin variables describing phase fluctuations and some new
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potential describing phase-phase interactions and phase-moduli interac-
tions (see also ref. 7). Also, in shell models higher than second order con-
nected correlation functions appears, as can be easily checked numerically,
and therefore the log-normal approximation must be meant only as the
first order term in the cumulant expansion as previously discussed.

APPENDIX A

In order to compute analytically the expression for any correlation
function, it is useful to realize that the calculation of either structure func-
tions or multi-scale correlation function can be reduced to the calculation
of a particular partition function with a suitable non-homogeneous magne-
tic field, Z(HF , p, q), where with HF we intend the one-dimensional vector
whose N components are given by the magnetic field in each site:
HF=(h1, h2,..., hN). In particular, from (11) and (9) one gets for the struc-
ture function:

Oup
nP ’ F D

N

i=1
dsi exph0/c2 ; N

i=1 si − p log(2) ; n
i=1 si − 1

2 ; i, j Ai, jsisj. (25)

The extra term in the exponential p log(2) ;n
i=1 si can be seen as an addi-

tional, position dependent, magnetic field of intensity p. Therefore, the
structure function Oup

nP is proportional to the original partition function
with a modified magnetic field

Oup
nP 3 Z(HF p

n ) 3 exp
1
2 (HF p

n+hF0, Â − 1, HF p
n+hF0),

where HF p
n is a vector with components given by:

Hp
n (i)=−h(n − i) p log(2), (26)

where we have introduced the Heaviside function, h(x). In this notation,
the non-homogeneous magnetic field acts from the integral scale i=1 up to
the inertial scale i=n. It is easy to realize, that similar expressions can be
derived for the most general multi-scale correlation functions. In particular,
the two scale correlation function, Oup

n uq
n+mP can be also calculated via a

new partition function with a modified, site-dependent, magnetic field:

Oup
n uq

n+mP 3 Z(HF p, q
n, n+m) ’ exp

1
2(HF p, q

n, n+m+hF0, Â − 1, HF p, q
n, n+m+hF0), (27)

where with HF p, q
n, n+m we denote the magnetic field vector whose ith compo-

nent is given by:

Hp, q
n, n+m(i)=−(h(n − i) p+h(n+m − i) q) log(2). (28)
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Now, it is long but simple to show with algebraic manipulation of previous
expressions, that the prefactor, C (m)

p, q defining the deviation of Oup
n uq

n+mP
from the exact fusion rules prediction is given by:

C (m)
p, q=

Oup
n uq

n+mPOuq
nP

Ouq
n+mPOup+q

n P
=expT

m
p, q (29)

with

Tm
p, q=(log 2)2 pq 1 C

n

i=1
Osisn+1Pc+Osisn+2Pc+ · · · +Osisn+mPc

2 , (30)

as reported in the text.

APPENDIX B

Let us here analyzed in more details the expression given in the body
of the paper for the normalized two-scale correlation function:

log C (m)
p, q=C

k

1
k!

C
i1, i2,..., ik

Osi1
si2

· sik
Pc Mp, q

i1, i2,...ik
(31)

with

Mp, q
i1, i2,..., ik

= D
j=i1,..., ik

(Hp, q
n, n+m(j)+Hq

n(j) − Hq
n+m(j) − Hp+q

n (j)). (32)

It is easy check that for k=1 we may distinguish two cases (i) if 1 [ i1 [ n

Mp, q
i1

=log2(−(p+q) − q+q+(p+q))=0; (33)

(ii) if n < i1 [ n+m:

Mp, q
i1

=log 2(−q − 0+q+0)=0. (34)

Therefore we may conclude that the first order contribution in the
cumulant expansion is identically zero.

For k=2, the only non-vanishing contributions are those with
1 [ i1 [ n and n < i2 [ n+m, which give:

Mp, q
i1, i2

=(log 2)2 (q(p+q) − q2)=(log 2)2 pq (35)
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and after a permutation between i1 and i2 we have:

log(C (m)
p, q)|k=2=(log 2)2 pq C

n

i=1
C
m

j=1
Osisn+jPc (36)

which coincide with the log-normal contribution.
For orders larger than 2, things becomes more complex, for example

for k=3 we have two cases with non-vanishing contributions:

• 1 [ i1 [ n and n < i2, i3 [ n+m leading to:

Mp, q
i1, i2, i3

=(log 2)3 (−(p+q) q2+q3)=−(log 2)3 (pq2) (37)

• 1 [ i1, i2 [ n and n < i3 [ n+m leading to:

Mp, q
i1, i2, i3

=(log 2)3 (−q(p+q)2+q3)=(log 2)3 (−qp2 − 2pq2). (38)

By considering all indexes permutation we get:

log(C (m)
p, q)|k=3=−(log 2)3 1 pq2 C

n

i=1
C
m

j=1
C
m

s=1
Osisn+jsn+sPc

+(2pq2+qp2) C
n

i=1
C
n

j=1
C
m

s=1
Osisjsn+sPc

2 . (39)

It is now possible to explicitly write down the generalization to any order k.
If we consider the indexes i1,..., ik there are n1 indexes between 1 and n; n2

indexes between n and n+m; with obviously n1+n2=k. We therefore have:

log(C(m)
p, q) |k= C

n1+n2=k
(−log 2)k {[(p+q)n1 (+q)n2 − (q)k]

· C
n

j1=1
· · · C

n

jn1
=1

C
m

s1=1
· · · C

m

sn2
=1

Osj1
· · · sjn1

ss1+n · · · ssn2
+nPc

4 (40)

with n1 > 0 and n2 > 0.
Let us now discuss how to obtain the expansion of scaling exponents

z(p) in power of p. Starting from their definition:

Oup
nP ’ k−z(p)

n , kn=2n (41)

we have, using (19):

z(p)=−
1

n log 2
C
k

1
k!

C
i1,..., ik

Osi1
· · · sik

Pc Gp
i1,..., ik

(42)
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where:

Gp
i1,..., ik

= D
j=i1,..., ik

Hp
n (j)=(−p log 2)k, (43)

because all indexes i1,..., ik must be between 1 and n otherwise Gp
i1,..., ik

=0.
Therefore, we obtain the expression cited in the body of the paper:

z(p)= C
j > 0

cj p j (44)

with cj defined in terms of the microscopic potential F.
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